Ablação Epicárdica: Quais são as novidades?

Mauricio Scanavacca,
Instituto do Coração (InCor) – HC – Faculdade de Medicina
Universidade de São Paulo

Sem conflito de interesse
Transthoracic Epicardial Mapping of Chagas Ventricular Tachycardia

Sosa E, Scanavacca M, d’Ávila A, Pileggi F. JCE 1996
Prevalence of Mappable Epicardial VTs in Structural Heart Disease

n: 257

Two major complications:
• Intra peritoneal bleeding (controlled after surgery)
• Coronary artery occlusion (no clinical repercussion)

N= 158
Epicardial Access Publications by Country

N = 168
Ventricular Tachycardia in Structural Heart Disease - Prevalence of Epicardial Substrate after Endocardial Failure -

<table>
<thead>
<tr>
<th>Author</th>
<th>year</th>
<th>N (%)</th>
<th>Cardiopathy Isch / non-isch</th>
<th>EPI (%)</th>
<th>Non-Inducibility / Rec Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacher¹</td>
<td>2009</td>
<td>156/917 (17%)</td>
<td>Isch (38%)/non-isch (62%)</td>
<td>78%</td>
<td>NI: - Rec Free: 70% 23±21m</td>
</tr>
<tr>
<td>Schmidt²</td>
<td>2010</td>
<td>59 (?)</td>
<td>Isch (18%)/non-isch (72%)</td>
<td>73%</td>
<td>NI: 82% Rec free: 53% 1 year</td>
</tr>
<tr>
<td>Della Bella³</td>
<td>2011</td>
<td>222/1836 (12%)</td>
<td>Isch (39%)/non-isch (61%)</td>
<td>70%-100%</td>
<td>NI: 71% Rec free: 69% 17±2m</td>
</tr>
<tr>
<td>Sarkozy⁴</td>
<td>2013</td>
<td>56/444 (13%)</td>
<td>Ischemic 100%</td>
<td>68%</td>
<td>NI: 74% Rec free: 54% 26.5m</td>
</tr>
</tbody>
</table>

- Prevalence of Epicardial Substrate in a First Approach - Depends on the Disease -

<table>
<thead>
<tr>
<th>Author</th>
<th>year</th>
<th>N</th>
<th>Cardiopathy</th>
<th>EPI (%)</th>
<th>Freedom Of Rec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soejima</td>
<td>2004</td>
<td>22</td>
<td>Dilated cardiomyo</td>
<td>32%</td>
<td>54% 334 ±280 d</td>
</tr>
<tr>
<td>Henz BH</td>
<td>2009</td>
<td>17</td>
<td>Chagas</td>
<td>100%</td>
<td>64.5% 318± 90m</td>
</tr>
<tr>
<td>Santangeli</td>
<td>2010</td>
<td>22</td>
<td>Hypertrophic</td>
<td>60%</td>
<td>73% 20±9 m</td>
</tr>
<tr>
<td>Yoshiga</td>
<td>2012</td>
<td>70</td>
<td>Post MI</td>
<td>6%</td>
<td>67%</td>
</tr>
<tr>
<td>Santangeli</td>
<td>2015</td>
<td>62</td>
<td>ARVD</td>
<td>63%</td>
<td>71% 56±44 m</td>
</tr>
<tr>
<td>Dell Russo</td>
<td>2016</td>
<td>27</td>
<td>Ischemic (VT Storm)</td>
<td>11,5%</td>
<td>68.5% 16±8 m</td>
</tr>
</tbody>
</table>
Epicardial Ablation in Structural Heart Diseases
- InCor: 2013 – 2014: 86 patients

Epicardium
- Yes: 60%
- No: 40%

Pearson: P<0.001
Ventricular Tachycardia Ablation
Optimizing indications for Epicardial Mapping and Ablation

Previous endocardial unsuccessful ablation?
- Yes: Consider Obtaining Epicardial Access for Mapping and Ablation
- No: Underlying structural epicardial substrates?
 - Yes: ECG suggesting epicardial VT site exit?
 - Yes: Consider Obtaining Epicardial Access for Mapping and Ablation
 - No: Perform Endocardial Ablation
 - No: Perform Endocardial Ablation

Modified from Boyle and Shivkumar. Circulation 2012
Pericardial Access: Risks

- Puncture
- Hemopericardium
- Coronary vein dysrupture
- Liver perforation

Guide wire Position

- AP view
- CS
- RV
- Guidewire

Hemopericardium – coronary vein dysrupture

Yamada & Kay – CE Clinics 2010
Garikipati et al. CE Clinics 2010

Epicardial Access Needle Embedded with a Real Time Pressure/Frequency Monitoring to Facilitate Epicardial Access
“Needle-in-needle” epicardial access

Kumar S, Stevenson W et al. HR 2015
Comparison of Complications Associated With Use Large Bore Needle and a Long Micropuncture Needle

<table>
<thead>
<tr>
<th>Complications</th>
<th>LB Needle (n=185)</th>
<th>MP Needle (n=219)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large pericardial effusion</td>
<td>15 (8.1)</td>
<td>2 (0.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Requiring drainage</td>
<td>9 (4.5)</td>
<td>2 (0.9)</td>
<td>0.01</td>
</tr>
<tr>
<td>Open heart surgery and repair of the ventricle or coronary</td>
<td>6 (3.2)</td>
<td>0</td>
<td>0.007</td>
</tr>
<tr>
<td>Other major complications</td>
<td>2 (1.1)</td>
<td>1 (0.5%)</td>
<td>0.46</td>
</tr>
<tr>
<td>Liver hematoma and surgical drainage</td>
<td>1 (0.6)</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>Injury to coronaries</td>
<td>1 (0.6)</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>Superior epigastric artery puncture</td>
<td>0</td>
<td>1 (0.5)</td>
<td>...</td>
</tr>
<tr>
<td>Minor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inadvertent RV entry with no significant pericardial effusion or RV injury</td>
<td>14 (7.6)</td>
<td>15 (6.8)</td>
<td>0.769</td>
</tr>
</tbody>
</table>

LB indicates large bore; MP, micropuncture; and RV, right ventricular.

Gunda S et al. Circulation AE 2015
Multiple and Unstable VTs
Substrate Mapping and Ablation
Catheter ablation of scar-based ventricular tachycardia: Relationship of procedure duration to outcomes and hospital mortality

N = 148 patients underwent VT ablation with mean procedure duration of 5.7±1.8 h

Yu R, Boyle N, Shivkumar K et al. HR 2015
Anatomicall Substrate of Chagas Disease
Potential Electrophysiological Circuits Based on the 3D MRI Anatomical Channels
Electroanatomical Substrate Mapping
Endo – Epicardial Substrate Modification - Chagas VT -

Pre-Ablation

Post-Ablation

InCor - 2015
Epicardial Ablation of VT
- Summary -

• Epicardial circuits are frequently found in patients with sustained VT and non ischemic cardiomyopathies, particularly in Chagas disease.

• Combining endo and epicardial mapping and ablation can improve the results of VT ablation in such patients.

• However, epicardial access and epicardial ablation increase the risk of complications.

• Previous knowledge of anatomical and functional characteristics of the scar related VT might optimize the risk / benefit for its indication.